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The microhardness indentation load/size effect in 
rutile and cassiterite single crystals 

H. L I * ,  R. C. BRADT 
The Mackay School of Mines, University of Nevada, Reno, NV 8955Z USA 

The microhardness indentation load/size effect (ISE) on the Knoop microhardness of single 
crystals of Ti02 and Sn02 has been investigated. Experimental results have been analysed using 
the classical power law approach and from an effective indentation test load viewpoint. The 
Hays/Kendall concept of a critical applied test load for the initiation of plastic deformation was 
considered, but rejected to explain the ISE. A proportional specimen resistance (PSR) model has 
been proposed that consists of the elastic resistance of the test specimen and frictional effects at 
the indentor facet/specimen interface during microindentation. The microhardness test load, P, 
and the resulting indentation size, d, have been found to follow the relationship 

P = al d -t- a2d 2 = aid + (Pc/d2o) d 2 

The ISE is a consequence of the indentation-size proportional resistance of the test specimen as 
described by al. a2 is found to be related to the load-independent indentation hardness. It 
consists of the critical indentation load, Po, and the characteristic indentation size, do. 

1. In troduct ion  
Of all of the testing techniques which have been ap- 
plied to assess the mechanical properties of materials, 
indentation hardness testing is probably the one in 
most widespread use [1-5]. Applications of micro- 
hardness indentation techniques, however, experience 
the indentation load/size effect at low levels of the 
testing load. This is known as the ISE and has been 
traditionally described through the application of the 
power law 

P = A d "  (1) 

where P is the indentation test load and d is the 
resulting indentation size. A and n are descriptive 
parameters derived from the curve fitting of experi- 
mental results. Equation 1 is sometimes referred to as 
Meyer's law [6]. For virtually all materials, the power 
law exponent, n, is experimentally observed to be 
between 1 and 2, which indicates that lower indenta- 
tion test loads result in higher apparent micro- 
hardnesses. This load dependence of hardness has 
been frequently reported [7-15]. 

The indentation load/size effect (ISE) on the micro- 
hardness has been considered on the basis of a variety 
of phenomena, including work hardening during 
indentation [2, 3], the load to initiate plastic deforma- 
tion [5], indentation elastic recovery [12], the activa- 
tion energy for dislocation nucleation [13], surface 
dislocation pinning [14, 15] and plastic deformation 
band spacing [16]. However, neither an explanation 
of the physical meaning of the power law exponent, 
the n value, nor the cause of the indentation load/size 

effect has been satisfactorily achieved. This paper ad- 
dresses those issues, examining extensive Knoop in- 
dentation measurements for two rutile-structure single 
crystals, TiO2 and SnO2 [10, 11]. 

2. Exper imenta l  resul ts  of  the  ISE 
The phenomenon of the ISE exists for a variety of 
indentor geometries, including the Brinell, Vickers 
and Knoop. Application of Equation 1 to the results 
yields an n value that is less than 2, indicative of an 
increasing apparent microhardness at lower indenta- 
tion test loads. To examine the ISE critically, it is 
necessary to evaluate an extensive set of experimental 
microhardness measurements on one material or re- 
lated materials with the same crystal structure. It is 
also desirable to avoid the complications which are 
introduced by the grain boundaries in polycrystalline 
structures and the phase boundaries in multiphase or 
composite structures. An obvious choice is one of 
single-crystal results. Because of the availability of 
extensive data for ruffle (TiO2) [10] and cassiterite 
(SnO2) [11], they have been chosen for the analyses 
applied in this paper. Previous studies of these single- 
crystals have addressed the microhardness aniso- 
tropies on different crystallographic planes and for 
different crystallographic directions. Those features 
will not be reviewed; only the load dependencies of the 
microhardnesses will be considered. 

Fig. 1 illustrates the relationship found between the 
coefficient, A, and the power law exponent, n, when 
the ISE phenomenon for TiO 2 and SnO 2 is addressed 
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Figure 1 Relationship'between the power-law parameters A and 
n for single crystals o f ( ~ )  TiO 2 and (A) SnO 2. 

in terms of Equation 1. The individual A and n values 
are summarized in Table 1. Regression analysis yields 
an intercept of n = 2.00 _+ 0.04 for A = 0. Because an 
n-value of 2 is expected in the absence of an ISE, these 
single crystal results are consistent with the power-law 
description of the load dependence of the microhard- 
ness of these crystals. Sargent and Page I-7] have 
considered several "n value versus In A" relationships 
in an at tempt to ascertain any possible microstruc- 
rural effects on these power-law parameters. In their 
summary study of polycrystalline materials, a trend of 
n versus In A was identified. Lower n-values are re- 
lated to higher A or In A values as the grain size 
increases, which relates to lower microhardnesses. 
They interpreted this observation as a grain-size 
weakening process. Later Sargent [17] associated the 

power-law n-value with his definition of a "standard" 
hardness value, Hs, and noted that lower n values are 
often associated with higher, Hs, values. The power- 
law results from these rutile structure crystals are in 
general agreement with the concepts advanced by 
Sargent and Page that there exists a basic relationship 
between the parameters A and n. The inverse linear 
relationship between the two parameters shown in 
Fig. 1 confirms the previously reported finding by 
Sargent and Page [7% although the degree of correla- 
tion which is evident for the single crystals in Fig. 1 is 
not revealed for the polycrystalline materials. This is 
probably because the microstructural effects of the 
polycrystalline specimens are superimposed upon 
the ISE. 

The experiment.al results and discussion mentioned 
above verify that the ISE of rutile and cassiterite single 
crystals are well described using Equation 1. Unfortu- 
nately, none of these results provides a basic under- 
standing for the two power-law parameters, A and n, 
nor to their relationship. It is necessary to progress 
beyond the power-law description to achieve an un- 
derstanding of the ISE. 

2.1.  T h e  H a y s / K e n d a l l  a p p r o a c h  to  t h e  ISE 

Hays and Kendall [5] have considered the ISE for the 
Knoop  microhardness of a number of metals. They 
advanced the concept that there exists a minimum 
level of the indentation test load, W, below which 
plastic deformation does not initiate, but only elastic 
deformation occurs. This has been observed by Gane 
and Bowden [18], who reported that there is a sudden 
indentor penetration into the surface of gold speci- 
mens at a nominal load level. Before the indentor 
achieves that critical indentation load, however, the 
indentation size does not increase with an increase of 
the test load. According to Hays and Kendall, the 
experimentally measured indentation size is not dir- 
ectly related to P, the applied indentation load, b u t  

T A B L E  I The power-law parameters for single crystals of TiO 2 and SnO 2 

(h k I)[u v w] TiO 2 SnO z 

A n A n 
( g p m  ") ( g ~ m - " )  

(1 00) 
I-0 0 1] 0.21 4- 0.03 1.75 4- 0.02 0.25 4- 0.03 
[_0 1 1] 0.25 4- 0.03 1.68 4- 0.01 0.14 4- 0.02 
[0 1 0] 0.15 4- 0.03 1.73 4- 0.01 0.17 4- 0.03 

(1 10) 
[0 0 1] 0.29 4- 0.02 1.68 4- 0.02 0.16 4- 0.02 
[1 ] 1] 0.35 4- 0.02 1.61 4- 0.01 0.21 4- 0.02 
[1 Y 0] 0.33 4- 0.01 1.64 4- 0.01 0.24 4- 0.01 

(oo 1) 
[_1 00] 0.41 4- 0.01 1.53 + 0.02 0.12 4- 0.01 
[1 1 0] 0.18 4- 0.02 1.77 4- 0.02 0.16 4- 0.01 
[0 10] 0.39 4- 0.03 1.54 4- 0.01 0.13 4- 0.01 

(1 1 1) 
[1 ]- 0] 0.24 4- 0.02 1.69 4- 0.01 0.23 4- 0.01 
[1 T 2] 0.27 4- 0.02 1.68 4- 0.01 0.29 4- 0.02 

1.73 4- 0.02 
1.84 4-_ 0.03 
1.77 4- 0.02 

1.80 4- 0.02 
1.74 4- 0.01 
1.71 4- 0.01 

1.88 4- 0.02 
1.86 _+ 0.02 
1.87 4- 0.01 

1.73 4- 0.02 
1.70 4- 0.02 
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rather to the effective indentation test load, defined as 
( P -  IV) where W is the material resistance to the 
initiation of plastic flow, as previously described. 

Hays and Kendall proposed that the relationship 
between (he indentation test load and the indentation 
size is not that of the original power law, but rather 

( P -  W )  = K d  2 (2a) 

which can be rearranged to 

P = W + K d  2 (2b) 

where K is a constant. This form of the test 
load/indentation size relationship suggests that Kick's 
law is fundamental, always yielding an exponent that 
is equal to 2. It implies that the power law exponent, 
or n-value, is not a material property, but is rather 
without any fundamental physical significance. The 
experimental microhardness data for the TiO2 and 
SnO2 single crystals allows for a critical evaluation of 
the Hays and Kendall concept. 

Fig~ 2 illustrates the application of Equation 2b as 
P versus d 2 to the TiO2 and SnO2 single-crystal 
results for their (1 0 0) planes. It is evident that a linear 
relationship exists and that the slope varies signific- 
antly for the different indentor orientations. Although 
the intercepts appear to be nearly the same, this latter 
point is actually an illusion of the scale of the figure. 
Regression analyses indicate that both the intercepts 
and the slopes vary considerably. Table II summarizes 
the plastic flow initiation loads, the W values, deter- 
mined from the regression analyses and the slopes of 
P versus d 2 for the two crystals. Both values are 
anisotropic. The magnitude of the plastic flow initia- 
tion load, W, is surprisingly large, a level which is 
significant when compared with the applied indenta- 
tion test loads. However, it is similar in magnitude to 
the material resistance loads reported by Hays and 
Kendall for metals. 

TABLE II Parameters of the Hays/Kendall approach for single 

crystals of TiO z and SnO 2 

(h k l)[u v w] TiO 2 SnO 2 

W K ~ W K" 
(g) (g gm -2) (g) (g gm -2) 

(l 00) 
[0 0 l] 16.3 • 0.7 0.07 18.2 + 0.6 0.08 
[0 1 1] 21.0 • 0.8 0.06 10.0 4- 0.7 0.07 
[0 10] 17.7 + 0.7 0.04 14.8 • 0.4 0.06 

(1 10) 
[0 0 1] 21.1 4- 0.6 0.07 13.0 + 0.2 0.07 
[l 1 1] 26.1 • 0.8 0.06 16.9 _+ 0.8 0.07 
[1 T O] 26.4 + 0.7 0.07 18.8 + 0.9 0.07 

(oo ~) 
[1 0 0 ]  30.9 + 0.5 0.05 7.8 + 0.5 0.07 
[1 10] 14.7 + 0.5 0.06 9.2 + 0.4 0.09 
[0 1 0] 29.5 • 0.6 0.05 7.9 4- 0.8 0.07 

(1 1 1) 
[1 T O] 18.1 + 0.4 0.06 17.5 • 0.5 0.07 
[1 1 2] 20.8 + 0.7 0.06 19.5 • 0.7 0.08 

a The 95% confidence intervals are all less than + 0.01. 

Comparing the two single crystals, higher plastic 
deformation initiation loads generally exist for TiO 2 
than for SnO 2. This is a contradictory result because 
TiO 2 is softer than SnO 2 and in terms of deformation 
might be expected to yield, or to initiate plastic flow at 
lower indentation test loads. The fact that the result- 
ing W values for the ceramic single crystals reported 
here are similar to those for the much softer metals 
reported by Hays and Kendall must also be viewed 
with some reservation. 

The essence of the Hays/Kendall approach is that 
the ISE is simply an artefact of the indentation test if 
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Figure 2 Hays/Kendall approach for the determination of the load for initiation of plastic flow on the ( 10 0) for single crystals of (a) TiO 2 and 
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the effective indentation test load ( P -  W) is con- 
sidered in the microhardness calculations. The power- 
law exponent will always be 2 as originally suggested 
by Kick [1]. Because the W values have now been 
determined, this point can be examined further 
through an iteration of Equation 2a in the logarithmic 
form by treating the exponent as a variable nw, which 
yields 

log(P - W) = log(K) + nwlog(d) (3) 

The subscript w is applied to the exponent to relate it 
to the assumption for the calculation of W values. If 
the indentation load/size effect is from the sample 
resistance, W, to initiate plastic deformation, the re- 
gression analysis of Equation 3 using the previously 
determined W values should yield nw values equal to 
2 for the experimental microhardness results. Logar- 
ithmic plots are presented in Fig. 3 for the (1 00) 
planes of the two crystals. The n w values of the 
straight lines appear to be about 2. They are also 
significantly different from the power-law exponents 
of Equation 1 summarized in Table I. As Hays and 
Kendall previously concluded, it is also tempting to 
conclude that the material-resistance load to initiate 
plastic flow may be the cause of the ISE. However, 
close scrutiny of the results suggests otherwise. 

Table III summarizes all the nw values as deter- 
mined through the iteration of Equation 3 along with 
the 95% confidence intervals based on the "t" distri- 
bution for these crystals. There exists significant devi- 
ation between the experimental nw values and 2 when 
the Hays/Kendall approach is applied. In fact, all of 
the nw values are larger than 2. This suggests that the 
iSE cannot be explained simply by taking the defor- 
mation initiation resistance, W, into account, as has 
been suggested by Hays and Kendall. In addition, if an 
original n value of less than 2 indicates that the appar- 
ent microhardness increases with a decrease of inden- 
tation test load, then n~ values greater than two 
indicate the opposite. This is obviously not the experi- 

TAB L E I I I Exponents nw for the Hays/Kendall approach 
in single crystals of TiO 2 and SnO2 

(h k l)[u v w] TiO 2 SnO 2 

(1 oo) 
[0 0 1] 2.08 + 0.08 2.10 4- 0.06 
[0 1 1] 2.11 4- 0.07 2.04 4- 0.05 
[0 1 O] 2.09 _+ 0.08 2.06 4- 0.06 

(1 lO) 
[0 0 1] 2.12 + 0.07 2.06 4- 0.06 
[1 T 1] 2.18 _+ 0.06 2.09 4- 0.05 
[1 ]- 0] 2.22 4- 0.06 2.10 4- 0.06 

(oo 1) 
[1 00 ]  2.24 4- 0.08 2.03 4- 0.05 
[1 1 0] 2.07 _+ 0.07 2.03 4- 0.07 
[0 1 O] 2.20 4- 0.07 2.03 _ 0.06 

(1 1 1) 
[1 ] O] 2.09 _+ 0.07 2.09 4- 0.07 
[1 1 2] 2.11 4- 0.07 2.11 4- 0.06 

mental result that has been observed for the single 
crystals of TiO2 and SnO2 [10, 11]. 

It must be concluded that the Hays/Kendall ap- 
proach to explain the ISE produces several inconsist- 
encies. First, the calculated W values are much too 
large with respect to both the experimental indenta- 
tion test loads and the loads at which the initiation of 
plastic deformation actually occurs. Significant plastic 
deformation occurs during indentation at only 50 g, 
whereas the W values are about 20 g. Test loads 
creating significant plastic deformation are much less 
than the W values predicted by the Hays/Kendall 
analysis. Second, the hardnesses of TiO2 are lower 
than those of SnO 2, but the calculated W values for 
TiO2 are generally higher than those for SnO2. 
A similar problem was also revealed in a study by 
Kotru et al. [9] on aluminates and orthochromites. 
Finally, although the nw values are about 2, the sum- 
mary in Table III clearly establishes that the iteration 
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process does not yield an exponent equal to 2, but one 
that is consistently greater than 2. It must be con- 
cluded that while the Hays/Kendall proposal of the 
incorporation of the material resistance load for the 
initiation-of plastic flow or yielding may provide for 
some additional insight to the ISE on the microhard- 
ness, it does not provide a satisfactory explanation of 
the ISE. 

2.2. A proportional specimen resistance 
(PSR) model 

An alternative proposal for analysis of the ISE is that 
the test-specimen resistance is not a constant as pro- 
posed by Hays and Kendall, but increases with the 
indentation size and is directly proportional to it. This 
is a logical approach for the resistance of the test 
specimen, P~, appears to be a directly proportional, 
elastic-like one as evinced by the unloading curves of 
instrumented hardness investigations. Load- indentor  
penetration curves have been recorded for MgO [19], 
silicon [20], aluminium and steel [20 22]. The un- 
loading regions presented in those studies reveal that 
the specimen resistance is linearly proportional to the 
indentor penetration depth and thus the indentation 
size. Those results justify the assumption that the 
specimen resistance is directly proportional to the 
indentation size. The proportional specimen resist- 
ance (PSR) can be expressed in the form 

Pr = a i d  (4) 

To a first approximation, the form of Equation 4 can 
be considered to be similar to the elastic resistance of 
a spring with the opposite sign to the applied indenta- 
tion test load. The elastic properties of solids confirm 
that there must be a linear elastic component to a l .  
The indentation size, d, can be related to the indenta- 
tion depth through the geometry of the indentor. 

To evaluate the proposal that the microhardness 
ISE on the microhardness results from the specimen 
resistance as expressed by Equation 4, the effective 
indentation test load is expressed as ( P -  Pr). The 
effective indentation load and the indentation size are 
then related as 

P - P~ = a2d  2 (5) 

Substituting Equation 4 into Equation 5 yields 

P = a i d  + a2 d2 (6a) 

where the a ~ (g lam- 1) coefficient relates to the pro- 
portional resistance of the test specimen and 
a2 (ggm -2) is a constant with units of stress. 

Equation 6a is of the same general form that has 
been applied by Bernhardt [23] and by Frohlich et al. 

E24] when utilizing (reducing) a polynomial series 
representation of the applied load to the indentation 
size effect. None of these researchers, however, have 
attributed the a t d term to an indentation-size propor- 
tional resistance of the test specimen. Rather they treat 
the a id  term as derived from an a i d  2 term when 
divided by d in an energy-balance approach and there- 
fore relate it to a specimen surface energy. Attributing 
the a l term to the specimen surface energy yields 

unacceptably large surface-energy values, exceeding 
10 6 erg cm-2(0.1 J cm-2) ,  as has been discussed by 
Hirao and Tomozawa for fused silica [25]. Thus, even 
though Equation 6a has been demonstrated to de- 
scribe satisfactorily several sets of experimental micro- 
hardness results, researchers have been puzzled by the 
excessive magnitude of the a 1 values. Relating a 1 to 
the proportional specimen resistance (PSR), rather 
than a surface energy, provides a new interpretation 
and also a clear alternative to the unreasonably high 
surface-energy values. 

The proportional specimen resistance (PSR) model 
described by the a 1 value and the second coefficient, 
a2, can be readily evaluated through the linear regres- 
sion of P/d versus d. Equation 6a in the alternative 
form is 

Fig. 4 illustrates P/d versus d for the (1 0 0) planes of 
the TiO2 and SnOz single crystals. Correlations for 
these plots are very high, r 2 > 0.99. Table IV sum- 
marizes all of the a l and a2 values for the two single 
crystals. Similar to the previous parameters which are 
descriptive of the microhardness, these a l and 
a2 values are also anisotropic. It is significant that on 
the (0 0 1) planes where two equivalent directions have 
been measured, the [1 0 0] and the [0 1 0], the a 1 and 
az values for each of the individual crystals are nearly 
identical. 

Having determined the a ~ values and the a2 values 
from the experimental results, it is necessary to at- 
tribute some physical significance to each, otherwise 
the PSR model does not provide for any improvement 
beyond the power-law description. If it is true that the 
power-law exponent, n, less than 2 is the result of not 
taking the proportional specimen resistance of the test 
specimen into account, then it naturally follows that 
there must exist a correlation between the n values and 
the a 1 values that describe the proportional specimen 
resistance (PSR). Fig. 5 depicts the power-law n values 
versus the proportional specimen resistance a 1 values 
for the single crystals. It is evident that there exists 
a strong correlation (r 2 =  0.94) between the two 
quantities which are inversely related. As an n value of 
2 should correspond to an at  value of 0, it is also 
significant that the results extrapolate to an n value 
intercept of 1.97 + 0.04 for an a 1 value equal to 0. It 
must be concluded that the a 1 values and the n values 
are related with respect to the ISE. On an empirical 
basis, the power-law exponents reflect the observed 
ISE as a result of curve fitting. However, with respect 
to the actual indentation process, the physical mech- 
anism which determines the n value is the propor- 
tional specimen resistance (PSR) of the test sample 
which is described by the a 1 value. 

The relationship depicted in Fig. 5 confirms that the 
ISE is a result of PSR. During microhardness indenta- 
tion the facets of the diamond indentor are aligned 
with different crystallographic planes and orienta- 
tions. If the specimen resistance has an elastic com- 
ponent, then it must vary from one crystal plane to 
another, as well as for different indentor orientations 
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T A B L E  IV Parameters a l ,  a 2 of the PSR model for single crystals of TiO 2 and SnO 2 

(h k l)[u v w] TiO 2 SnO 2 

a 1 a 2 a 1 a 2 
(glare 1) ( g g m  2) ( g g m - a )  ( g g m - 2 )  

(1 00) 
I-0 0 1] 0.80 4- 0.05 0.061 4- 0.005 0.95 4- 0.03 0.065 4- 0.006 
[0 1 1] 0.96 4- 0.02 0.051 4- 0.006 0.44 4- 0.06 0.065 4- 0.005 
[0 1 o] 0.62 4- 0.03 0.038 _ 0.006 0.66 4,-_ 0.06 0.055 4- 0.003 

(1 lo) 
[0 0 1] 1.14 4- 0.06 0.061 4- 0.005 0.59 + 0.01 0.059 + 0.003 
[1 ]~ 1] 1.31 ___ 0.05 0.049 + 0.004 0.83 + 0.02 0.059 + 0.003 
[1 Y 0] 1.19 + 0.05 0.047 4- 0.005 0.91 + 0.02 0.058 4- 0.006 

(0o 1) 
[1 0 0] 1.42 4- 0.04 0.035 4- 0.004 0.30 4- 0.03 0.070 4- 0.004 
[1 1 O] 0.67 _+ 0.06 0.056 4- 0.004 0.41 4- 0.03 0.083 4- 0.004 
[0 1 O] 1.37 _+ 0.02 0.036 4- 0.006 0.31 4- 0.05 0.070 _+ 0.004 

(1 1 1) 
[1 1 0] 0.83 _+ 0.05 0.052 4- 0.006 0.86 4- 0.04 0.062 4- 0.005 
[1 1 2] 0.99 4- 0.05 0.054 4- 0.006 1.01 4- 0.06 0.068 4- 0.003 

on the same crystal plane, because the elastic proper-  
ties are four th-order  tensors and are anisotropic. This 
appears to be the situation, for when two crystallo- 
graphic indentat ion condit ions are the same for a spe- 
cimen, then the a 1 values should be identical with 
respect to those equivalent conditions. This is con- 
firmed, as the nlloo I values are the same as the 
n[o 1 0l values on the (0 0 1) planes, as are the 
a q l  0 0l and the auo  t o] values on the (0 0 1) for 
these two rutile-structure single crystals. 

It is of interest to compare  the a l  values with the 
elastic moduli  of the crystals. The single-crystal elastic 
constants  of rutile and cassiterite have been measured 
[26, 27], thus the Young 's  moduli,  E<h k ~>, are readily 
calculated. Perpendicular  to the (1 0 0) planes, the 
Young 's  moduli  are 147.3 and 174 .5GPa  for TiO2 
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and SnO 2, respectively, while for the (1 1 0), the values 
are 368.8 and 368.3 GPa.  The (0 0 1) are 385.8 and 
340.1 G P a  and the (1 1 1) are 318.9 and 278.8 GPa.  If 
the a i values are directly propor t ional  to the Young's  
modul i  perpendicular  to the planes, then the (1 0 0) 
planes should have the smallest a 1 values, only about  
one-half  of those of the other three crystal planes. The 
a l  values in Table IV do not  consistently ascribe to 
the above order  of the Young's  moduli.  Thus, while 
the elastic properties of the crystals undoubtedly  con- 
tribute to the a l  values and the ISE, the elastic com- 
pression of the crystals by the indentor  must  not  be 
the only contr ibut ion to the ISE and the a 1 value. 

Having concluded that  the a 1 d term is an indenta- 
tion-size elastic- like propor t iona l  resistance of the test 
specimen, it is of interest to a t tempt  to estimate it 
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independently. Instrumented microhardness tests that 
display linear unloading curves have been reported by 
Doerner and Nix [21], Loubet et al. [19] and Pharr  
and Cook [22]. Order of magnitude estimates of the 
a ~ term can be made from the initial linear regions of 
the unloading curves in those publications, although 
they are for a Berkovich and not a Knoop indentor. 
The a 1 values estimated from those studies are slightly 
larger than the experimental a l values in Table IV. 
This discrepancy may occur either from an overesti- 
mate of the appl!ed test load, or an underestimate 
of the indentor penetration depth. As the latter is un- 
likely, the overestimate must be because of the load 
discrepancy. It must be concluded that the effective 
indentation test load is less than the applied test load. 

The use of the externally applied test load to esti- 
mate a l from instrumented indentation unloading 
curves overestimates its value. This is because the use 
of the applied load does not consider either the elastic 
resistance of the test specimen or the diamond 
facet/specimen interface frictional effects. When a pyr- 
amidal indentor is impressed into the test specimen 
surface, the local contact stresses are very high at the 
indentor facet/specimen interface. Thus the frictional 
effects over the area of the contact must also be sub- 
stantial as suggested by the experiments of Atkinson 
and Shi [28]. When the frictional force parallel to the 
indentor facet/specimen interface is resolved into its 
components, a portion directly opposes the applied 
test load. Thus the resulting effective indentation load 
is reduced by the opposing indentor facet/specimen 
interracial friction as well as the elastic resistance of 
the test specimen. This presents the same dilemma 
that is encountered in attempts to calculate the actual 
resolved shear stresses on the slip planes beneath and 
surrounding the indentor when explaining microhard- 
ness anisotropy [29]. It is evident that the externally 
applied test load is reduced by the indentor 
facet/specimen friction resistance. Its effect should 

increase as the indentation size decreases because 
the indentation conditions involve a higher indenta, 
tion surface to deformation volume. Therefore, the 
al  value consists of two component effects: (i) the 
elastic resistance of the test specimen, and (ii) the 
indentor facet/specimen interface friction. 

Buckley and Miyoshi [-30] have studied the friction 
of ceramic single crystals. According to their experi- 
mental results, the coefficient of friction is a function of 
both the crystal plane and crystallographic orienta- 
tion. The coefficient of friction also increases substan- 
tially with increasing contact load as Enomoto and 
Yamanaka report [31]. Those experimental results 
not only support a significant frictional component of 
the proportional specimen resistance (PSR) and an 
anisotropic description of the al  values observed in 
this study, but also its direct proportionality to the 
applied test load. In retrospect, this should not be 
surprising as Doerner and Nix [21] have discussed the 
incorporation of non-linear elasticity to correlate bet- 
ter their instrumented indentation load-depth slopes 
with the test specimen's elastic properties. They estim- 
ated a local hydrostatic stress of nearly 10 GPa  be- 
neath the indentor, applying the elastic modulus in- 
crease at high pressures to account for the observed 
experimental discrepancy. The overestimate of the 
elastic modulus can be similarly explained by the 
reduction of the applied test load by frictional effects 
at the indentor facet/specimen interface. 

It must be concluded that the aa value represents 
the proportional specimen resistance (PSR) of the test 
sample. It is possible to demonstrate the relationship 
of the a l value to the original power-law exponent 
and the ISE. However, it is a formidable challenge to 
calculate the a ~ value from first principles. This is 
because the PSR is composed of two components: 
(i) the elastic resistance of the test specimen, and (ii) 
the frictional resistance developed at the indentor 
facet/specimen interfaces. Both contributions may be 
expected to be anisotropic, but the latter cannot be 
calculated without the knowledge of the crystallo- 
graphic and the stress dependencies of the coefficient 
of friction between the indentor facets and the test 
specimen. 

No relationship exists between the a2 values and 
the power-law exponents for these crystals, therefore it 
is appropriate to reject any direct association of the 
a2 values with the ISE. According to Equation 6a and 
the results of Fig. 5, when al  = 0 and there is no 
indentation size effect, the a 2 value must be related to 
the load-independent hardness. In their investigation 
of the hardness anisotropy of cubic single-crystal 
LAB6, Li and Bradt [-32] applied a self-consistent 
approach to the power law of Equation 1 to obtain 

- n (7)  

where P and d have the same meaning as for the 
simple power law, and the n value is identical for 
Equations 1 and 7. do is the characteristic indentation 
size which is derived from the experimental data and 
Pc is the critical indentation load level, above which 
the indentation size effect is significantly reduced, or 
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TABLE V The normalized power-law parameters for single crystals of TiO 2 and SnO z 

(h k/)  [u v w] TiO2 SnOz 

Pc(g) do(~tm ) Ho(g mm-2)  Pc(g) doQ.tm) Ho(g mm-2)  

Fig. 7a illustrates the microhardness results on the 
(1 0 0) in the [0 0 1] for both TiO2 and SnO2, while 
Fig. 7b presents a general schematic diagram of the 
ISE. It is evident that the ISE only contributes to the 
measured microhardness at test loads less than Pc and 
indentation sizes below do. The ISE increases the 
measured microhardness above the load-independent 
hardness value. When the increment of apparent 
microhardness increase by the ISE is examined for 
similar test conditions for the two single crystals, for 
example at the 50 g, (1 0 0) [0 0 1] test condition, then 
if the indentor facet/specimen interface frictional ef- 
fects are not too different, the ISE contribution to the 
hardness increase for the two crystals may be expected 
to be related to their elastic moduli of the (1 0 0). For 
SnO= and TiO2, the E(loo) are 174.5 and 147.3 GPa,  
respectively, a ratio of 1.18. The ISE "hardening" 
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diminished. Both do and Pc are readily obtained from 
experimental results if data are taken over a suffi- 
ciently wide range of microhardness indentation test 
loads. The do and Pc values may be applied through 
the standard hardness equation when the load-inde- 
pendent hardness, Ho, is determined [32]. Table V 
lists the do and Pc and Ho values for these single 
crystals. Fig. 6 shows that the load-independent hard- 
ness, Ho, is directly related to the a2 value of the 
expression for the d-dependence of P in Equation 6. 
This suggests that there must also exist a correlation 
between the az value and the quantity Pc/dZo. 
Table VI summarizes and compares the Pc/d2o and 
a2 values for TiOz and SnO2. The two are virtually 
identical. It must be concluded that the a2 value is 
physically defined by Pc/d2o and that it is representa- 
tive of the load-independent hardness, Ho. 

0 i I I 

0 0.03 0.06 0.09 

PSR parameter, o2 (q Bm -z) 

Figure 6 Relationship between the load-independent hardness, Ho, 
and the PSR parameter, a z, for single crystals of(A)  TiO 2 and (Ik) 

SnO 2" 
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TABLE VI Comparison of the P/d2o and a2-values for single 
crystals of TiO 2 and SnO 2 

(h k 1)[u v w] TiO2 SnO2 

(Pc/d2o) a2-vatue (pjd2o) a2-value 
(g p_m - 2) (g p.m- 2) (g la m - 2) (g p.m- 2) 

(1 oo) 
[0 0 1] 0.062 0.061 0.065 0.065 
[0 1 1] 0.053 0.051 0.065 0.065 
[0 1 O] 0.039 0.038 0.056 0.055 

(1 10) 
[0 0 1] 0.063 0.061 0.060 0,059 
[1 1 1] 0.052 0.049 0.061 0.059 
[1 l 0] 0.049 0.047 0.061 0.058 

(oo 1) 
[1 00]  0.039 0.035 0.071 0.070 
I-1 1 O] 0.056 0.056 0.084 0.083 
[0 1 13] 0.040 0.036 0.061 0.070 

(1 1 1) 
[1 ] O] 0.053 0,052 0.062 0.062 
[]- 1 2] 0.056 0.054 0.070 0.068 
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increments at the 50 g test loads are 570 and 
460 kg m m - 2 ,  respectively, a ratio of 1.23. These ra- 
tios are essentially the same, especially considering 
that the indentor facet/specimen frictional effects are 
unknown and may be slightly different. This confirms 
the importance of the specimen elastic modulus con- 
tribution to the ISE and the al  term. 

It is now possible to further specify the a2 term in 
Equation 6a. As the a2 term is just P~/dZo, Equation 6a 
becomes 

P = aid  + \do ] 

where the a a d term has been previously defined as the 
proportional specimen resistance (PSR). To express 
the ISE in terms of the Knoop hardness versus inden- 
tation size, Equation 12 can be combined with the 
standard Knoop microhardness formula 

P 
K H N  = 14229~- (9) 

where P is in grams and d is in micrometres, to yield 
the Knoop microhardness as 

K H N  = 14229 + \ d o , ] J  

Equation 10 reveals that the Knoop microhardness is 
composed to two contributions. The first is associated 
with the ISE as the PSR. It decreases with increasing 
indentation test load, P, or increasing indentation size, 
d. The second term is the load-independent hardness 
contribution, Pc/d 2. It depends on the specimen's 
crystallographic reference and the material, but not on 
the indentation test load. 

According to Equation 10 and consistent with nu- 
merous microhardness studies of metals, ceramics and 
glasses, some in the form of single crystals and some 
polycrystalline specimens, there exists an indentation 
load/size effect boundary (ISE-B) which may be speci- 
fied by Pc and do. On the low-test-load side of that 

boundary, the effect of the PSR on the microhardness 
is significant and an ISE is prevalent. However, on the 
high-test-load side, the PSR is insignificant and hence 
can be neglected in practice. 

With respect to the Hays and Kendall concept for 
the initiation load of plastic flow, W, there would be 
a term, in Equation 8, similar to the a0 term of the 
series originally proposed by Bernhardt [23] and 
Frohlich et al. [24]. However, once Wis exceeded, and 
that appears to occur very early in the indentation 
process, perhaps at nN test loads, then its contribution 
is lost in the scatter of the results. The W term may be 
of practical significance for very lowqoad-contact fric- 
tion and wear effects as well as in nanoindentation 
studies at very low test loads, but it appears to be 
rather insignificant for normal microhardness 
measurements. 

3. C o n c l u s i o n  
Utilizing experimental data of the Knoop microhard- 
ness versus the indentation test load for single crystals 
of rutile and cassiterite on the (1 0 0), (1 1 0), (0 0 1) 
and (1 1 1) planes, the indentation microhardness 
load/size effect (ISE) has been analysed. The power 
law approach was initially applied, revealing that the 
indentation load/size effect is anisotropic and varies in 
extent for single crystals of rutile and cassiterite. In 
general, single-crystal rutile experiences a greater ISE 
than single-crystal cassiterite. 

A proportional specimen resistance (PSR) model 
was proposed and applied to explain the ISE. This 
approach is supported by published experimental re- 
sults of instrumented micro-/nanohardness studies of 
the indentation penetration depth versus indentation 
test load. The PSR model yields the expression 

P = a l d  + a2d 2 = aid + ( ~ o ) d 2  

The a ,  term is related to the power-law exponent, the 
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n value. It describes the ISE. It was confirmed that the 
ISE is the result of the proportional specimen resist- 
ance (PSR) which is composed of(i) the elastic resist- 
ance of the test specimen, and (ii) the friction at the 
indentor ]'acet/specimen interface. 

In the second-order equation describing the test 
load indentation size relationship, the a2 term is not 
related to,the ISE. Rather the a a value is descriptive of 
the load-independent hardness, sometimes referred to 
as the "true" hardness. It was confirmed that the 
a2 term is equal to the quantity Pc/d2o which is de- 
fined by the concept of the normalized power-law 
description of the load-indentation size relationship. 
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